科目名	授業形態	担当教員名		
医用電子工学概論	講義	福田 博也		
時間数(単位数)	授業回数 年次		開講時期	
60 時間 (2 単位)	30 回	2 年次	後期	

授業の目的・概要

生体電気信号は微小で低周波成分に富み、外乱に反応しやすい性質を持っているため、その検出には民生機器や工業計測を対象とする電気・電子回路とは異なった回路技術が使われている。ここでは、生体計測に必要な電気・電子回路の基本的な原理と法則について、医・生物学系の人たちにも理解できるように、図、表を多く活用しながら講義する。臨床工学技士として必要な医療・生体計測に関わる電子工学的基礎を理解することを目的とする。

授業の到達目標

生体計測に必要な電気・電子回路の基本的な原理と法則について、医療機器との関わりを通して理解する。

授業計画

1/						
口	内容					
1	電流と電圧	16	真性半導体、p 形半導体、n 形半導体			
2	直流回路の基本法則(オームの法則、電流・電圧則)	17	pn 接合ダイオード			
3	直流回路の解析(1) 抵抗の直列・並列接続	18	ダイオードの静特性と動特性			
4	直流回路の解析(2) 合成抵抗、ブリッジ回路	19	トランジスタの構造と動作原理			
5	正弦波交流回路の取り扱い(1) フェーザ表示法	20	トランジスタの静特性と接地法			
6	正弦波交流回路の取り扱い(2) インピーダンス	21	バイアス回路			
7	交流回路の解析(1) インピーダンスの直列接続	22	電界効果トランジスタの構造と動作原理			
8	交流回路の解析(2) インピーダンスの並列接続	23	差動増幅回路の動作原理			
9	直流電力、交流電力	24	演算増幅器(1) 基本原理、等価回路			
10	時定数回路の過渡現象 (1) RC 回路	25	演算増幅器(2) 反転増幅回路、非反転増幅回路			
11	時定数回路の過渡現象 (2) RL 回路	26	ディジタルと論理回路			
12	生体信号、雑音、増幅	27	A/D 変換、D/A 変換			
13	フィルタ回路(1) 受動フィルタ、能動フィルタ	28	通信、光エレクトロニクス(1) 変調と復調			
14	フィルタ回路(2) 周波数特性	29	通信、光エレクトロニクス(2) 光デバイス			
15	電気伝導と導体・半導体・絶縁体	30	まとめ			

成績の評価方法と基準

種別	割合	評価基準・その他備考	
筆記試験	60%	生体計測に必要な電気・電子回路の基礎に関する理解度を演習問題を通して評価する。	
レポート・課題			
小テスト	20%	中間試験の結果により評価する。	
平常点	20%	授業中に行う演習問題の結果により評価する。	
その他			
自由記載	載 定期試験、小テスト、平常点の結果を総合的に評価する。		

教科書

書名	著者・編集者名	出版社名			
臨床工学講座 医用電子工学	中島章夫 他	医歯薬出版			
臨床工学講座 医用電気工学1	戸畑裕志 他	医歯薬出版			

自由記載 理解を深めるための資料を配付する

参考文献

書名	著者・編集者名	出版社名

自由記載

備考

普段から、身の回りの「電気」「電子」に目を向けるようにして下さい。