科目	名	授業形態		担当教員名		
医用機器学概論 Ⅱ		講義	;	林田 健		
時間]数(単位数)	授業回数	:	年次		開講時期
	30 時間 (1 単位)	15	回	1	年次	後期
_						
	E の到達目標 EにおけるME技術の意義を理解する。M	Eに必要な医療機器や	それにま	つわる工学	知識の基	
医療		Eに必要な医療機器や	それにま	つわる工学	知識の基	礎を説明できる。
医療	におけるME技術の意義を理解する。M	Eに必要な医療機器や	それにま	つわる工学	知識の基	礎を説明できる。
医療	におけるME技術の意義を理解する。M 計画 内容	Eに必要な医療機器や で に に に で に で で で で で で で で で で で で で	それにま	つわる工学	会知識の基	礎を説明できる。
医療 受業 回	におけるME技術の意義を理解する。M 計画 内容 計測機器の取り扱いと保守(1) 生体		それにま	つわる工学	知識の基	礎を説明できる。
受 学 回 1 2	におけるME技術の意義を理解する。M 計画 内容 計測機器の取り扱いと保守(1) 生体 計測機器の取り扱いと保守(2) 生体	信号の種類	それにま	つわる工学	会知識の基	礎を説明できる。
医 受 回 1 2 3	におけるME技術の意義を理解する。M 計画 内容 計測機器の取り扱いと保守(1) 生体 計測機器の取り扱いと保守(2) 生体	信号の種類 計測の信号処理 の概要と血圧測定法	それにま	つわる工学	知識の基	礎を説明できる。
医 受 回 1 2 3 4	計画 内容 計測機器の取り扱いと保守(1) 生体 計測機器の取り扱いと保守(2) 生体 計測機器の取り扱いと保守(3) 血圧 計測機器の取り扱いと保守(4) 聴診	信号の種類 計測の信号処理 の概要と血圧測定法	それにま	つわる工学	会知識の基	礎を説明できる。
医 類 回 1 2 3 4 5	におけるME技術の意義を理解する。M 計画 内容 計測機器の取り扱いと保守(1) 生体 計測機器の取り扱いと保守(2) 生体 計測機器の取り扱いと保守(3) 血圧 計測機器の取り扱いと保守(4) 聴診 計測機器の取り扱いと保守(4) 聴診	信号の種類 計測の信号処理 の概要と血圧測定法 法			知識の基	礎を説明できる。
授 回 1 2 3 4 5 6	計画 内容 計測機器の取り扱いと保守(1) 生体 計測機器の取り扱いと保守(2) 生体 計測機器の取り扱いと保守(3) 血圧 計測機器の取り扱いと保守(4) 聴診 計測機器の取り扱いと保守(5) 呼吸 計測機器の取り扱いと保守(5) 呼吸	信号の種類 計測の信号処理 の概要と血圧測定法 法 計測装置			会知識の基	礎を説明できる。

著者・編集者名

著者・編集者名

日本生体医工学会ME

出版社名

出版社名

南江堂

9 MEの基礎となる生体物性(1) 音の性質 10 MEの基礎となる生体物性(2) 光の性質 11 MEの基礎となる生体物性(3) 熱の性質

問題演習

滅菌

消毒

割合 評価基準・その他備考

12 MEの基礎となる生体物性(4)

100%

MEの基礎知識と安全管理(改定第8版)

13 ME機器の滅菌・消毒(1)

14 ME機器の滅菌・消毒(2)

成績の評価方法と基準

15 まとめ

種別 筆記試験

レポート・課題 小テスト 平常点 その他 自由記載 **教科書**

 自由記載

 参考文献

 書名

自由記載 備考