科目名				授業形態			担当教員名					
放射線生物学				講義			中島 裕夫					
時間数(単位数)			授業回数		年次			開講時期				
	60	時間	(2	単位)		30	口		1	年次	後期

授業の目的・概要

原爆被爆国であるがゆえに放射線アレルギーを持つ日本人だが、年間国民医療被曝線量は世界一である。このよ うに、恐れられたり、多くの利用がなされている。放射線の物理学的作用、化学的作用、生物学的作用のメカニ ズムを学習し、放射線の自然被曝、医療被曝、大量被曝でのそれぞれの線量における人体影響を理解する。

授業の到達目標

治療や検査ではどのくらいの放射線量を被曝するのか、放射線治療の患者にはどのような症状が出るのか、その 患者への照射において何に気をつけるべきかを理解するために、分子レベル、細胞レベル、臓器レベル、個体レベルの影響と症状の関係を理解するとともに、訳も分からず、ただ恐いと思われている放射線の正当な恐さを説 明する。

授業計画

口	内容		
1	放射線とは何か?	16	細胞レベルでの影響 (細胞周期、アポトーシス)
2	放射線の歴史と功罪	17	組織レベルでの影響(ベルゴニー・トリボンドーの法則)
3	放射線生物学の基礎(細胞の構造と生理、細胞周期)	18	組織レベルでの影響(主な臓器の放射線障害と閾値)
4	放射線生物学の基礎(遺伝子とDNA、突然変異と癌・遺伝病)	19	個体レベルでの影響(確率的影響と確定的影響)
5	放射線生物に関係する放射線の物理学	20	個体レベルでの影響 (腸菅死、骨髄死の機構)
6	放射線生物学に関係する放射線の化学	21	個体レベルでの影響(急性障害、晩発障害、胎児影響)
7	放射線生物学で用いる単位(放射線強度のあらわし方)	22	発がんと遺伝性影響の発生機構
8	放射線生物作用の初期過程(物理、化学、生物学過程)	23	発がんと遺伝性影響のリスク推定と倍加線量
9	放射線による細胞死と生存率曲線(標的論とヒット論)	24	次世代への影響(生殖器被曝、胎内被曝)
10	放射線による細胞死と生存率曲線(SLD、PLD、損傷回復)	25	腫瘍の放射線生物学(放射線と腫瘍の細胞動態)
11	RBEとLET、LETとOERの関係	26	放射線治療(分割照射、防護、増感)、温熱療法
12	分子レベルでの影響(DNA損傷、染色体異常、突然変異)	27	放射線障害の防護(防護の基本的考え方と法律の関係)
13	分子レベルでの影響(遺伝子損傷の修復機構)	28	医療、産業、自然被曝による影響
14	放射線影響の検出方法	29	チェルノブイリ原発、JCO、福島原発の事故とは
15	細胞レベルでの影響(細胞周期、アポトーシス)	30	放射線生物学のまとめ

成績の評価法と基準

種別	割合	評価基準・その他備考
定期試験	100%	60点以上の得点で修得とする。
レポート		
小テスト		
平常点		
その他		
.t. t ⇒→ .t.b.		

自由記載 基本的には、定期試験の得点で評価するが、平常点、レポートも採点に考慮することがある。

教科書

書名	著者・編集者名	出版社名
人体のメカニズムから学ぶ放射線生物学	松本義久 (編集)	メジカルビュー社
放射線 必須データ32: 被ばく影響の根拠	田中司朗 他	創元社

自由記載

参考文献

書名	著者・編集者名	出版社名

自由記載

備考